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Abstract

A 3D incompressible thermal lattice Boltzmann model is proposed in this paper to solve 3D incompressible thermal

flow problems. Two different particle velocity models of D3Q15 and D3Q19 are incorporated in our thermal model. It is

indicated that the present thermal model is simple and easy for implementation. It is validated by its application to

simulate the 3D natural convection of air in a cubical enclosure, which is heated differentially at two vertical side walls.

Good agreement was obtained between the present results and those from a Navier–Stokes solver.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Lattice Boltzmann method (LBM) is an ideal mesoscopic approach to solve nonlinear macroscopic

conservation equations because of its simplicity and ease for parallelization. For incompressible iso-

thermal flows, the LBM is found to be at least as stable, accurate and computationally efficient, as

traditional computational methods [1,2] and has achieved excellent success in different application

areas such as multiphase flow and complex fluid phenomena [3]. In contrast, its application at the

energy moment level is still struggling with numerical instabilities. A good coverage of the literature

review about the thermal LBM is given by Lallemand and Luo [4]. Practically, it is important and

sometimes critical to have capability to simulate thermal effects simultaneously with the fluid flow. The
temperature distribution in a flow field is of central interest in heat transfer problems. In most geo-

physical flows, the temperature difference is the driving mechanism for the motion of the fluid. So it is

necessary to develop a capable thermal model to simulate the incompressible thermodynamics using

LBM.
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The earliest work was given by Massaioli et al. [5] using the idea of the passive scalar for the temperature

and this scheme is also used for the highly parallel 3D simulations of Rayleigh–Benard turbulence [6].

Currently, there are several attempts to construct the thermal models. Luo [7] suggested that the diffi-
culty of solving thermal problems could be overcome by going back to the Boltzmann equation for dense

gases, the time-honored Enskog equation. Its practical value remains to be demonstrated because so far no

simulation result has been available.

Alexander et al. [8] proposed the multi-speed scheme that expands the equilibrium function to the

third-order of the velocity. But the Prandtl number is fixed at the value of 1/2. This limitation has been

partially removed by Chen [9] using a two-time relaxation operator. He also proposed higher-order

parametric equilibrium functions [10] to satisfy the full set of thermo-hydrodynamic constraints. Nev-

ertheless, the multi-speed scheme suffers from severe numerical instability and the temperature variation
is limited to a narrow range. Chen [11] pointed out that the origin of reducing stability condition is

related to the lack of a global H-theorem. Based on this, they stabilized the scheme [12] by identifying a

temperature-dependent factor in the equilibrium function that leads directly to the removal of the

Galilean invariance artifact, and relaxes the requirement of instantaneous accuracy of this factor. This

results in a stable scheme but introduces artificial thermal diffusion, which is strongly dependent on the

bulk velocity.

The passive-scalar approach utilizes the fact that the macroscopic temperature satisfies the same evo-

lution equation as a passive scalar if the viscous heat dissipation and compression work done by the
pressure are negligible. In the passive-scalar LBM thermal model, the temperature is simulated using a

separate distribution function that is independent of the density distribution. So it enhances the numerical

stability. Extensive studies of 2D and 3D Rayleigh–Benard convections using this method were made by

Shan [13].

The two-distribution functions model, which is called internal energy density distribution function

(IEDDF) thermal model by He et al. [14], shows great improvement in the stability over the previous LBM

thermal models, although a new set of distribution functions is used to describe the temperature dynamics.

It is based on the recent discovery that the lattice Boltzmann isothermal models can actually be derived
directly by discretizing the continuous Boltzmann equation in temporal, spatial, and velocity spaces.

Following the same procedure, the IEDDF thermal model is derived by discretizing the continuous evo-

lution equation for the internal energy distribution. The model has been successfully used to solve some

thermal problems in two dimensions [15,16]. On the other hand, we have to indicate that since the pressure

comes from the second moment of the density distribution, and is independent of the internal energy

distribution, the method actually solves the passive advection problem.

Attempts are also taken from a different way by using higher isotropy of lattice. Pavol et al. [17]

proposed the non-space filling lattices, typically octagons, which offer a higher degree of isotropy, to
solve the thermal problems. They have proposed the octagonal lattices in 2D and 3D. Some pre-

liminary simulations for 2D jet flow between plane boundaries held at constant temperatures were

reported.

On the other hand, we have to indicate that most applications of the above thermal models are

limited to the 2D cases. Though the Rayleigh–Benard convection in 3D has been successfully simulated

by Shan [13] using passive-scalar method to a certain degree, only the periodic and Dirichlet boundary

conditions are considered. For the engineering thermal applications, they usually contain the solid

boundaries and Neumann boundary conditions are often in the presence of the flow configurations. In
order to solve the 3D thermal problems for the engineering application, a 3D thermal model based on

IEDDF thermal model is proposed in this paper. It uses two distribution functions to model the flow

and thermal fields. The density distribution function faðx; e; tÞ is used to simulate the macroscopic density

and velocity fields, and the energy density distribution function gaðx; e; tÞ is used to simulate the mac-

roscopic temperature field.
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The particle velocity models used in our thermal LBM are D3Q15 and D3Q19. In the literature, there are

some other particle velocity models for the thermal problem. For example, Qian [18] presented D3Q21 and

D3Q25 in his new lattice BGK models, in which a proper internal energy is introduced. Chen [10] proposed
D3Q40 for the thermal problem using no nonlinear deviation multi-speed models. Vahala et. al. [19]

proposed D3Q41 and D3Q53 for the thermal applications using higher order symmetric and no space filling

velocity lattice model. Most of these models have not been applied to the thermal problem. Our D3Q15 and

D3Q19 models are simpler than these models. There is no additional particle velocity as compared with the

isothermal particle velocity models.

Natural convection flow analysis in 3D enclosures has many thermal engineering applications, such as

cooling of electronic devices, energy storage systems and compartment fires. In the present paper, the

numerical study of the 3D natural convection in an air-filled cubical enclosure, which is heated differentially
at two vertical side walls, is used as an example to validate our 3D thermal model. Numerical results using

two different particle velocity models of D3Q15 and D3Q19 are compared well with those [20] using a high-

resolution finite difference scheme to solve Navier–Stokes equations. This shows the applicability of our 3D

incompressible thermal LBM for thermal applications.
2. The 3D incompressible thermal lattice Boltzmann model

For the incompressible flow, if the transport coefficients are independent of the temperature, the energy

equation can be decoupled from the mass and momentum equations. For the incompressible thermal

problem, He et al. [14] proposed two distribution functions: density distribution function and internal

energy density distribution function.

The governing equations for these two functions are:

fa ~xx
�

þ~eead; t þ d
�
� fa ~xx; t

� �
¼ � 1

sv
fa ~xx; t
� �h

� f eq
a ~xx; t
� �i

þ dF ; ð1Þ
ga ~xx
�

þ~eead; t þ d
�
� ga ~xx; t

� �
¼ � 1

sc
ga ~xx; t
� �h

� geqa ~xx; t
� �i

; ð2Þ

where F is an external force term.
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Fig. 1. The lattice velocities of D3Q15.
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Fig. 2. The lattice velocities of D3Q19.
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For the density distribution function, D3Q15 and D3Q19 are usually used. The configurations of the
lattice velocities of these two models are shown in Figs. 1 and 2, respectively. For D3Q15 model, the lattice

velocities are defined as

~eea ¼
0; a ¼ 0;
ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; a ¼ 1 to 6;
ð�1;�1;�1Þ; a ¼ 7 to 14;

8<
: ð3Þ

The equilibrium functions for the density distribution function are given as

f eq
a ¼ waq 1

2
64 þ 3e

*
a � V

*

c2
þ
9 e

*
a � V

*� �2
2c2

� 3V
*2

2c2

3
75; ð4Þ

where w0 ¼ 2=9, wa ¼ 1=9 for a ¼ 1–6 and wa ¼ 1=72 for a ¼ 7–14.

For D3Q19 model, the lattice velocities are defined as

e
*
a ¼

0; a ¼ 0;
ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; a ¼ 1 to 6;
ð�1;�1; 0Þ; ð�1; 0;�1Þ; ð0;�1;�1Þ; a ¼ 7 to 18;

8<
: ð5Þ

The equilibrium functions for the density distribution functions are given as

f eq
a ¼ waq 1

2
64 þ 3e

*
a � V

*

c2
þ
9 e

*
a � V

*� �2
2c2

� 3V
*2

2c2

3
75; ð6Þ

where w0 ¼ 1=3, wa ¼ 1=18 for a ¼ 1–6 and wa ¼ 1=36 for a ¼ 7–18.

The pressure in both models is determined by the equation of state p ¼ 1
3
q and the sound speed is c2s ¼ 1

3
.

The viscosity in both models is related to the relaxation time through the same equation of t ¼ ð2sv � 1Þ=6.
Usually, higher-order quadrature for velocity is necessary for the thermal LBM. However, based on the

discovery of [14] that the LBM thermal models can be derived by properly discretizing the continuous
evolution equation for the internal energy density distribution in temporal, spatial and velocity spaces, the



264 Y. Peng et al. / Journal of Computational Physics 193 (2003) 260–274
continuous equilibrium distribution function for the internal energy density distribution function can be

represented by

geq ¼ qe

2pRTð ÞD=2
exp

 
� ~ee2
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!
~ee2
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2
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2ðRT Þ2
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� Dþ 2

D

!
~VV 2

2RT

3
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The zeroth- through second-order moment [14] of the second term in Eq. (7) vanishes. Consequently, this

term can be eliminated without affecting the recovery of the macroscopic energy equation from the energy

evolution equation. The zeroth- through second-order moment of remaining part of the energy equilibrium

distribution involves only zeroth- through fifth-order moment of
R
fm exp ð�f2Þdf ¼

P
a waf

m
a . Therefore

the third-order Gauss–Hermite quadrature is still valid. So we can choose the same lattice models for the

energy density distribution function as those used for the density distribution function, which are D3Q15

and D3Q19. At the same time, it can be seen from Eq. (7) that after omitting of the second term, the

equilibrium energy density distribution function has the similar form as the equilibrium density distribution

function. Following the same derivation procedure, the forms of the equilibrium energy density distribution

functions for D3Q15 and D3Q19 can be obtained.

For the particle velocity model of D3Q15, the equilibrium energy density distribution functions can be

defined as

geq0 ¼ � qe
3

V
*2

c2
; ð8aÞ
geq1�6 ¼
qe
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2
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3
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For the particle velocity model of D3Q19, the equilibrium energy density distribution functions can be

defined as

geq0 ¼ � qe
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; ð9aÞ
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geq7�18 ¼
qe
36

2

2
64 þ 4

e
*
a � V

*
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þ 9

2

e
*

a � V
*� �2

c4
� 3

2
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The internal energy is related to the temperature by e ¼ 3RT =2, where R is the gas constant.

Then the macroscopic density, velocity and temperature are calculated by

q ¼
X
a

fa; ð10aÞ
qV
*

¼
X
a

e
*

afa; ð10bÞ
q 3RT=2ð Þ ¼
X
a

ga: ð10cÞ

The Chapman–Enskog expansion for the density distribution function can recover the continuity and

N–S equations. The detailed derivation of this is given by Hou [1] and will not be shown here.

In the following derivation, it can be seen that the macroscopic energy equation for incompressible flow

can be derived from the evolution equation for the energy density distribution function by the Chapman–
Enskog expansion following the same procedure as Hou [1].

The Taylor series expansion for Eq. (2) to Oðd2Þ results in

d ot

�
þ~ee � r

�
ga þ

d2

2
ot

h
þ~ee � r

i2
ga þO d3

� �
¼ � 1

sc
ga
�

� gð0Þa

�
; ð11Þ

where geqa is represented as gð0Þa .

Expanding ga about gð0Þa , we can get

ga ¼ gð0Þa þ dgð1Þa þ d2gð2Þa þO d3
� �

: ð12Þ

The first-order expansion of Eq. (11) is

ot0

�
þ~ee � r

�
gð0Þa ¼ � 1

sc
gð1Þa : ð13Þ

The second-order expansion of Eq. (11) is

ot1gð0Þa þ 1

�
� 1

2sc

�
ot0

�
þ~ee � r

�
gð1Þa ¼ � 1

sc
gð2Þa : ð14Þ

Taking the summation of Eqs. (13) and (14), and using the equilibrium energy density distribution func-

tions (Eq. (8a)–(8c) for D3Q15 and Eq. (9a)–(9c) for D3Q19), respectively, we can get

ot0 qeð Þ þ r � q~VV e
� �

¼ 0; ð15Þ
ot1 qeð Þ þ 1

�
� 1

2sc

�
Pð1Þ ¼ 0; ð16Þ

where Pð1Þ ¼
P

aðot0 þ e � rÞgð1Þa and it is Pð1Þ ¼ �sc 5
9
r2ðqeÞ after neglecting the Oðu2dT Þ terms.
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Combining Eq. (15) and Eq. (16), we can get

ot qeð Þ þ r � q~VV e
� �

¼ vr2 qeð Þ: ð17Þ

For the incompressible applications, the compression work done by the pressure and the viscous heat

dissipation can be neglected. So the dissipation term does not appear in the energy equation (17).
The thermal diffusivity v for both models is determined by

v ¼ 5

9
sc

�
� 1

2

�
: ð18Þ

From above derivations, we can see that evolution equations (1) and (2) can recover the macro-
scopic incompressible continuity, N–S equations and energy equation through the Chapman–Enskog

expansion.
3. Implementation of new model on non-uniform grid

It is well known that for high Rayleigh number, the thermal boundary layer is very thin. In order to

capture the physical properties within the boundary layer, a lot of grid points are needed on the uniform
grid. It will waste a lot of computational time and memory size when such fine grid is also used in smooth

flow region. An effective way to solve the above problem is to use fewer mesh points with clustering of grid

points in critical regions, a convenient way used in conventional CFD method.

In order to extend the above-mentioned 3D thermal model to be used on non-uniform grids, the Taylor

series expansion- and least square based-LBM (TLLBM) is used. The detailed explanation of this method

can be found in [21] and its extension for the 2D thermal application can be found in [16]. When the

TLLBM technique is applied to Eqs. (1) and (2), the final forms are

faðx0; y0; z0; t þ dÞ ¼ W1 ¼
XMþ1

k¼1

a1;kf 0
k�1; ð19Þ
gaðx0; y0; z0; t þ dÞ ¼ W 0
1 ¼

XMþ1

k¼1

a01;kg
0
k�1; ð20Þ

where

f 0
k ¼ 1

�
� 1

sv

�
faðxk; yk; zk;~eea; tÞ þ

1

sv
f eq
a ðxk; yk; zk;~eea; tÞ þ Fad;
g0k ¼ 1

�
� 1

sc

�
gaðxk; yk; zk;~eea; tÞ þ

1

sc
geqa ðxk; yk; zk;~eea; tÞ:

The formation of the geometric matrixes can be found in [21]. When the same particle velocity model

and supporting points are chosen for the density and energy density distribution functions, the geometric

matrix A and A0 are the same. This can save both the computational time and the storage.

The order of the geometric matrix is ½M þ 1� � 6 for two dimensions and ½M þ 1� � 10 for three

dimensions. For the 2D problems, the Taylor series expansion involves six unknowns, that is, one distri-

bution function at the time level t þ dt, two first-order derivatives, and three second-order derivatives. To
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solve for these unknowns, M should be at least equal to 5. In order to avoid possible ill-conditioning, least

squares technique is used andM > 5 is needed. For the 3D problems, this expansion involves 10 unknowns,

that is, one distribution function at the time level t þ dt, three first-order derivatives, and six second-order
derivatives. So M should be at least equal to 9. M > 9 is chosen to avoid possible ill-conditioning using the

least squares technique. The value of M does not affect much the accuracy of the numerical results [22]. For

example, the calculations for the natural convection in a cubic cavity at Ra ¼ 104 using M ¼ 14 andM ¼ 18

are done in this paper. When M ¼ 14, the maximum horizontal velocity umax on the vertical mid-line in the

symmetry plane (y ¼ 0:5) is 0.206; the maximum vertical velocity vmax on the horizontal mid-line in this

plane is 0.221. When M ¼ 18, the maximum horizontal velocity umax is 0.208 and the maximum vertical

velocity vmax is 0.222. It can be seen that the change in the maximum velocity is within 1% when increasing

M from 15 to 18. For the following cases in this paper, M is chosen to be 14 for the convenience, which
coincides with the particle model D3Q15.
4. Boundary condition

Generally speaking, the problem of formulating boundary conditions within the LBM formalism con-

sists in finding an appropriate relation, which expresses the distribution function from outside environment

to the flow field (unknown) as a function of the distribution function from the flow field to the outside
environment (known). The bounce-back rule of the non-equilibrium distribution function proposed by Zou

and He [23] is used for implementing the boundary condition. The known distributions are determined

from the governing equations (1) and (2) for the uniform mesh or (19) and (20) for the arbitrary mesh, and

the unknown distributions are determined from the following bounce-back rule of the non-equilibrium

distribution functions.

The unknown density distribution function at the boundary can be determined from the following

boundary condition:

f neq
a ¼ f neq

b ; ð21Þ

where~eea and~eeb have opposite directions.~eea is the direction where the distribution function is unknown and
~eeb is the direction where the distribution function is known.

The unknown internal energy density distribution function at the boundary can be determined from the

following relationship:

gneqa �~ee2af
neq
a ¼ � gneqb

�
�~ee2bf

neq
b

�
: ð22Þ

On the boundary, there exist some special particles which do not go from the outside environment into

the inside flow field or come from the inside flow field to the outside environment. Take the D3Q19 model

as an example. As shown in Fig. 2, for the boundary line AB on the left vertical wall, the particle directions

9 and 10 are such special directions. For the 3D problem, on each boundary line, there are four such special

directions for D3Q15 and two for D3Q19. At these special particle directions, the values for the density
distribution function and energy distribution function cannot be determined from their evolution equations

or the bounce-back boundary condition. For the simulations on the uniform grids, since these values do not

transport any information into the interior points, the equilibrium functions are given for these two dis-

tribution functions at these special directions. However, for the simulations on the arbitrary mesh, these

values are very important and will affect the values at the interior points. So the extrapolation scheme is

used for the two density distributions at these special directions as shown in [16]. That is, the values for

these density distributions at these special directions are extrapolated from values of the interior points on

the corresponding directions by using the second-order scheme.
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For the Neumann boundary condition, the temperature on the wall is unknown. In order to use the

above-mentioned bounce-back condition, we transfer it to the Dirichlet type condition by using the con-

ventional second-order finite difference approximation to get the temperature on the boundary [16]. Iter-
ation is needed in order to get the accurate temperature on the wall.
5. Numerical simulation

In order to verify whether our 3D incompressible thermal LBM can be used to solve the 3D thermal

problems, we carried out the computation for a sample problem. The problem considered is a natural

convection in a 3D cubical cavity with two vertical side walls maintained at different temperatures. The
temperature difference between the walls introduces a temperature gradient in a fluid, and the consequent

density difference induces a fluid motion, that is, convection. The remaining walls are adiabatic. The

problem definition and the boundary conditions are displayed in Fig. 3.
5.1. Buoyancy force and dimensionless parameter

The Boussinesq approximation is applied to the buoyancy force term. This means that the properties b
and t are considered as constants, the density q is constant, and the buoyancy term is assumed to depend

linearly on the temperature

q~GG ¼ qbg0 Tð � TmÞ~kk; ð23Þ

where b is the thermal expansion coefficient, g0 is the acceleration due to gravity, Tm ¼ ðTL þ THÞ=2 is the

average temperature, and~kk is the vertical direction opposite to that of gravity. So the external force F in Eq.

(1) is

F ¼
~GG � ð~ee� ~VV Þ

RT
f eq:
Adiabatic at
y=0 and z=0

Adiabatic at
y=L and z=L

g

z

y

T=TH

at x=L
T=TL

at x=0

x

Fig. 3. Configuration of natural convection in a cubical cavity.
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The dynamical similarity depends on two dimensionless parameters: Prandtl number Pr and Rayleigh

number Ra,

Pr ¼ t=v; Ra ¼ bg0DTL3
� �

= tvð Þ; ð24Þ

where DT ¼ TH � TL.
To ensure the code working properly in the near-incompressible regime, we carefully choose the value of

bg0DTL. Once bg0DTL is determined, the kinetic viscosity and the thermal diffusivity are determined through

the two dimensionless numbers, Pr and Ra. Using the relationships t ¼ ð2sv � 1Þ=6 and v ¼ ð5=9Þ
½sc � ð1=2Þ�, two relaxation times st; sc can be determined from the kinetic viscosity and thermal diffusivity,

respectively.

Nusselt number Nu is one of the most important dimensionless parameters in describing the convective
heat transport. The Nusselt numbers at the isothermal walls are defined as

NumeanðyÞ ¼
Z 1

0

oT ðy; zÞ
ox

����
x¼0 or x¼1

dz; ð25Þ
Nuoverall ¼
Z 1

0

NumeanðyÞdy: ð26Þ
5.2. Grid and convergence criterion

In present simulations, the uniform grid is used for Ra ¼ 103 and the time step equals to the grid dis-

tance, while the non-uniform grid is used for Ra ¼ 104 and Ra ¼ 105 in order to get the accurate results

using fewer grid points. The non-uniform grid is formed by stretching the mesh points near the walls, which
is shown in Fig. 4. The time step is the minimum grid distance.

The convergence criterion for all the cases is set to

max
i;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2i;j þ v2i;j þ w2

i;jÞ
nþ1

q���� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2i;j þ v2i;j þ w2

i;jÞ
n

q ����6 10�7; max
i;j;k

jT nþ1 � T nj6 10�7; ð27Þ

where n and nþ 1 represent the old and new time levels, respectively.
Z

X

Y

Fig. 4. The non-uniform mesh system of a cubic cavity.
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6. Results and discussion

6.1. Validation of numerical results and analysis of flow and thermal fields

Numerical simulations of the natural convection in a cubic cavity at Rayleigh numbers of 103–105 are

carried out using the particle velocity model of D3Q19. Table 1 shows representative quantities of the flow

field and the heat transfer rates in the symmetry plane (y ¼ 0:5). In this symmetry plane, the representative

quantities of the flow field include: the maximum horizontal velocity umax on the vertical mid-line in this

plane and its location z, the maximum vertical velocity vmax on the horizontal mid-line and its location x.
The representative quantities of the heat transfer rates in this symmetry plane contain the following Nusselt

numbers defined at the vertical boundary x ¼ 0. They are the maximum value of the local Nusselt number
Numax and its location z, the minimum value of the local Nusselt number Numin and its location z, and the

average Nusselt number Numean. The numerical results of a N–S solver [20] are also included for com-

parison.

From Table 1, we can see that our simulation results generally compare well with those from N–S solver.

There are some small differences between the results using two different methods. However, these dis-

crepancies are within 3% and acceptable for the engineering applications. For Ra ¼ 103, these discrepancies

may be caused by the fact that too small grid size is used by the N–S solver, which is only 32� 32� 32,

while our numerical results are the grid-independent results, which will be shown in the following section.
For Ra ¼ 104 and Ra ¼ 105, the N–S results are based on the mesh size of 62� 62� 62, while the grid sizes

used in this work are 61� 45� 45 and 91� 65� 65 for Ra ¼ 104 and Ra ¼ 105, respectively. Basically, the

present results agree well with the N–S solution. As far as the computation time is concerned, all the

calculations for Ra ¼ 103 and Ra ¼ 104 are done on PC-IV 2.4 GHz. The calculation for Ra ¼ 105 is done

on the Compaq ES40 workstation. The calculation times (seconds) needed for Ra ¼ 103, Ra ¼ 104, and

Ra ¼ 105 are 144437.78, 221268.50, and 433846.54, respectively. The memory needed for the calculation of

Ra ¼ 105 is 735 MB.

From the current results, we can say that our 3D thermal model has the capability to solve the thermal
flow problems.

The streamlines and isothermal contours in the symmetry plane of y ¼ 0:5 for Ra ¼ 103 to Ra ¼ 105 are

shown in Figs. 5 and 6. The overall flow patterns and isotherms are qualitatively similar to those of the 2D

thermal flows. However, the effect of the three dimensions is notable and it can be represented in the overall

Nusselt number at the isothermal walls, which is to be described in the following section.
Table 1

Comparison of representative field values in the symmetry plane (y ¼ 0:5) between LBM and a Navier–Stokes solver

Ra 103 104 105

Method LBM NS solver LBM NS solver LBM NS solver

Grid size 81� 81� 81 32� 32� 32 61� 45� 45 62� 62� 62 91� 65� 65 62� 62� 62

umax 0.132 0.1314 0.206 0.2013 0.149 0.1468

Position(x; z) 0.5, 0.188 0.5, 0.2000 0.5, 0.163 0.5, 0.1833 0.5, 0.136 0.5, 0.1453

vmax 0.133 0.1320 0.221 0.2252 0.240 0.2471

Position(x; z) 0.826, 0.5 0.8333, 0.5 0.887, 0.5 0.8833, 0.5 0.935, 0.5 0.9353, 0.5

Numax 1.432 1.420 3.720 3.652 7.88 7.795

Position(x; z) 0, 0.0625 0, 0.08333 0, 0.1625 0, 0.1623 0, 0.09 0, 0.08256

Numin 0.729 0.7639 0.595 0.6110 0.750 0.7867

Position(x; z) 0, 1.0 0, 1.0 0, 1.0 0, 1.0 0, 1.0 0, 1.0

Numean 1.097 1.105 2.304 2.302 4.658 4.646



Fig. 5. Streamlines for the natural convection in a cubical cavity at Ra ¼ 103; 104; 105.

Fig. 6. Isotherms for the natural convection in a cubical cavity at Ra ¼ 103; 104; 105.
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6.2. The overall Nusselt number at the isothermal walls

The non-dimensional heat transfer rate at the isothermal walls is a very important parameter in the

engineering application. Table 2 shows the overall Nusselt number on the isothermal wall of x ¼ 0 at

Raleigh numbers of 103–105 using D3Q19. The results of the Navier–Stokes solver are also included for

comparison. The agreement of results between these two different methods is very good.
From Table 2, we can see that for Ra ¼ 103, the overall Nusselt number at the heated wall is 1.075, while

for the 2D square cavity, the average Nusselt number on the heated wall is 1.117. The 3D result of the

overall Nusselt number is smaller than that in the two dimension case, which shows the effect of the side

walls. This observation agrees well with the results shown in Fig. 7. Fig. 7 represents the profile of the mean

Nusselt number along the y-direction on the heated wall of x ¼ 0 for Ra ¼ 103. The mean Nusselt number

increases as the symmetry plane is approached, and its peak value occurs at the symmetry plane located at

y ¼ 0:5. The peak value at the symmetry plane is still smaller than the 2D average Nusselt number. So the

overall Nusselt number should be smaller than the 2D result. The same trend is applied to Ra ¼ 104 and
Ra ¼ 105.
Table 2

Comparison of the overall Nusselt number at the isothermal wall x ¼ 0 between LBM and a Navier–Stokes solver

Ra 103 104 105

Method LBM NS solver LBM NS solver LBM NS solver

Nuoverall 1.075 1.085 2.085 2.100 4.378 4.361



Fig. 7. Distribution of the mean Nusselt number in the y-direction for Ra ¼ 103.
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6.3. Grid-independence study for Ra ¼ 103 using D3Q19

In order to see the influence of the grid size on the calculations, the numerical simulations for Ra ¼ 103

using D3Q19 are carried out on three different grid sizes: 71� 71� 71, 81� 81� 81, and 91� 91� 91.

Table 3 shows the representative quantities of the flow field and the heat transfer rates in the symmetry

plane and the overall Nusselt number on the heated wall on these different grids.

From Table 3, we can see that with the increase of the grid number, the numerical results are improved
as compared with those from the N–S solver. When the number of grid points in each direction is increased

from 81 to 91, there is no much improvement on the numerical results. So we can say that the grid size of

81� 81� 81 is fine enough to get accurate results for Ra ¼ 103.

6.4. Comparison of numerical results using D3Q15 and D3Q19

In order to see the influence of the particle velocity models on the calculations, numerical simulations are

carried out on two different particle models: one is D3Q15 and the other is D3Q19. Table 4 shows the

comparison of the representative quantities of the flow field and the heat transfer rates in the symmetry

plane and the overall Nusselt number on the heated wall using D3Q15 and D3Q19.

From Table 4, we can see that for Ra ¼ 103, these results are almost the same for D3Q15 and D3Q19.
While for Ra ¼ 104, there are some differences in the results. D3Q19 can get better results than D3Q15 when

compared with the N–S solver. In addition, during the converging process, the small oscillation happens for

D3Q15, while D3Q19 is very stable. This is the reason that the numerical simulation at Ra ¼ 105 is only

carried out using D3Q19. This means that although D3Q19 will use more memory than that of D3Q15 for

the same grid number, it is more stable and can get better results. This agrees well with the assessment made

by Mei et. al. [24]. Three 3D lattice models of D3Q15, D3Q19, and D3Q21 have been assessed by Mei et al.
Table 3

Comparison of numerical results for Ra ¼ 103 on three different grids

Mesh 71� 71� 71 81� 81� 81 91� 91� 91 NS solver

umax 0.133 0.132 0.132 0.1314

Position(x; y; z) 0.5, 0.5, 0.186 0.5, 0.5, 0.188 0.5, 0.5, 0.188 0.5, 0.5, 0.2000

vmax 0.133 0.133 0.133 0.1320

Position(x; y; z) 0.829, 0.5, 0.5 0.826, 0.5, 0.5 0.833, 0.5, 0.5 0.8333, 0.5, 0.5

Numax 1.433 1.432 1.430 1.420

Position(x; y; z) 0, 0.5, 0.0571 0, 0.5, 0.0625 0, 0.5, 0.0777 0, 0.5, 0.08333

Numin 0.727 0.729 0.730 0.7639

Position(x; y; z) 0, 0.5, 1.0 0, 0.5, 1.0 0, 0.5, 1.0 0, 0.5, 1.0

Numean 1.085 1.097 1.098 1.105

Nuoverall 1.073 1.075 1.076 1.085



Table 4

Comparison of numerical results between D3Q15 and D3Q19

Ra 103 104

Method D3Q15 D3Q19 D3Q15 D3Q19

Grid size 81� 81� 81 81� 81� 81 61� 45� 45 61� 45� 45

umax 0.133 0.132 0.208 0.206

Position(x; y; z) 0.5, 0.5, 0.188 0.5, 0.5, 0.188 0.5, 0.5, 0.163 0.5, 0.5, 0.163

vmax 0.133 0.133 0.222 0.221

Position(x; y; z) 0.826, 0.5, 0.5 0.826, 0.5, 0.5 0.887, 0.5, 0.5 0.887, 0.5, 0.5

Numax 1.440 1.432 3.648 3.720

Position(x; y; z) 0, 0.5, 0.0525 0, 0.5, 0.0625 0, 0.5, 0.1225 0, 0.5, 0.1625

Numin 0.696 0.729 0.446 0.595

Position(x; y; z) 0, 0.5, 1.0 0, 0.5, 1.0 0, 0.5, 1.0 0, 0.5, 1.0

Numean 1.093 1.097 2.250 2.304

Nuoverall 1.073 1.075 2.050 2.085
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[24] in terms of efficiency, accuracy and robustness for lid driven cavity flow problem. They found that

D3Q19 is the best for the case investigated; D3Q15 exhibits the velocity oscillation and is prone to com-

putational instability; the more complicated D3Q21 model does not necessarily give more accurate results

than D3Q19 model with the same spatial resolution. So, most of the calculations in this paper are based on

D3Q19.
7. Conclusions

A 3D incompressible thermal model for LBM is proposed in this paper. The numerical results using this

model for simulation of the 3D steady-state natural convection of air in a cubical enclosure compare well

with those from a N–S solver. This shows that our thermal LBM has the applicability to solve the 3D

thermal problem. The present model is simple and easy for implementation. No additional particle ve-

locities are used as compared with the isothermal particle models. It is worth to mention that its application

for the arbitrary geometry is straightforward by introducing the Taylor series expansion- and least square
based-LBM.
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